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1 Introduction

Dynamic discrete choice models (DDCMs) are widely used to analyze agents’ intertem-

poral decisions in a wide range of fields, most notably, industrial organization (technology

adoption), health (addiction and postponement of medical procedures), education (decisions

to continue or drop out of school), labor (decisions to stay in the labor force or retire), and

trade (entry decisions into export markets). A key object of interest in these models is the

agents’ time preference, i.e., how they trade-off the future against the present. Tradition-

ally, researchers have adopted exponential discounting, which results in an intertemporal

substitution rate that is constant over time and predicts time-consistent behavior.

An increasing body of evidence indicates that often agents’ behavior is not time-consistent.

A popular generalization of exponential discounting is hyperbolic discounting, which general-

izes exponential discounting to allow agents to experience present-bias. Present-bias implies

that agents place disproportionately more weight on their utility today than their future,

while they discount consistently when comparing any two future periods.1 Empirically iden-

tifying discount factors is inherently difficult, already in the simple exponential discounting

setting. Compared to exponential discounting, hyperbolic discounting models introduce

additional parameters, which leads to considerable challenges for both identification and

estimation.

In this paper, we contribute to the relatively new literature on identification of DDCMs

with hyperbolic discounting. We focus on the economically relevant class of models with a

finite horizon, a terminating action, and stationary flow utilities.2 We provide novel iden-

tification results for both sophisticated and naive agents’ discount factors and their flow

utilities. Our identification strategy exploits the recursive structure of DDCMs along with

variation in the observed conditional choice probabilities (CCPs) over time. The key contri-

bution of this paper is to show how the presence of a terminating action allows us to obtain

identification with fewer data requirements and less restrictive assumptions than what is

used in the existing literature.

Most importantly, we do not need to observe the final period to identify the discount

factors of the sophisticated agent, and we provide identification results for the naive agent.

1Evidence for present-biased behavior often comes from lab experiments documenting preference reversals.
For example, when subjects are asked about whether they prefer 1 dollar today or 2 dollars tomorrow, most
subjects would choose 1 dollar today. However, when the same subjects are asked whether they would like
1 dollar one month from now, or 2 dollars one month plus one day later, many subjects choose the 2 dollar
payout.

2While not every economic decision problem has a terminating action, they are prevalent in many econom-
ically relevant settings, for example, in new technology adoption (De Groote and Verboven, 2019), long-term
financial product decisions (Blevins et al., 2020), and decisions to continue education or drop out of school
(Eckstein and Wolpin, 1999).
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Moreover, we avoid having to normalize the flow utility of a reference action for both the so-

phisticated and the naive agent, which is typically done in empirical work, even though it can

have detrimental implications for counterfactual simulations and policy recommendations.

Our dynamic model setup follows the seminal framework by O’Donoghue and Rabin

(1999). In this framework agents in different periods are modelled as different selves that

are independent across time periods. Time-inconsistent behavior can arise because of dif-

ferent objectives of the current self and the future selves. The most common approach to

parametrize the present-bias problem is by (quasi-)hyperbolic discounting.3 Quasi-hyperbolic

time preferences are also referred to as βδ-preferences because the discount factor t periods

in the future is given by βδt. Throughout this paper, we will refer to δ as the (traditional)

exponential discounting parameter, and β is the present-bias parameter. The exponential dis-

counting model is a special case of quasi-hyperbolic discounting with β = 1 and present-bias

implies that β < 1.

Agents with present-biased preferences are further categorized as either sophisticated or

naive agents. The key difference is that sophisticated agents are aware that they will be

present-biased in the future and take this into account when making a decision today. In

contrast, naive agents are aware of their contemporaneous present-bias but they believe

that they will not exhibit present-bias in the future and discount using an exponential rate

tomorrow, even though in the future they will still be present-biased.

In spite of its theoretical popularity hyperbolic discounting models have only recently

be investigated empirically. The main reason for this is that the joint identification of

both present-bias parameters and exponential discounting parameters is notoriously difficult

in general DDCMs. Even in DDCMs with exponential discounting, the discount factor is

generally non-parametrically unidentified, see, for example, Rust (1994) and Magnac and

Thesmar (2002).4 As hyperbolic discounting introduces at least one additional parame-

ter, namely, the present-bias parameter β, the discount factors are still non-parameterically

unidentified unless special restrictions are imposed.

Present-bias introduces significant identification challenges because of the conflict be-

tween the current self and the future selves. This requires substantial adjustments in how

to extract information about the long-run value functions and the model primitives from

the equilibrium CCPs. Therefore, the identification of DDCMs with hyperbolic discounting

is not a trivial extension of the existing approaches. For a finite horizon setup, Abbring,

3To be precise, hyperbolic discounting is used only in continuous time problems. Quasi-hyperbolic dis-
counting is an approximation of hyperbolic discounting in discrete time, see, Laibson (1997). To ease notation
we use the term hyperbolic discounting throughout this paper.

4Abbring and Ø. Daljord (2020b) study the (set) identification of the discount factor in DDCMs under
exclusion restrictions that affect expected discounted future utilities but not current utility.
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O. Daljord, and Iskhakov (2019) provide a set identification result for the discount factors

of sophisticated agents, and Mahajan, Michel, and Tarozzi (2020) study the identification of

different types of agents (sophisticated, naive, and partially naive) under stronger exclusion

restriction. Both papers require data on the final period. This data requirement can be

restrictive, because agents often face very long-term decision problems, such as paying a

mortgage, or investing in a pension account, for which final period data are often hard to

obtain.5

Motivated by the literature that studies identification of DDCMs with exponential dis-

counting using a terminating action, in particular, Bajari et al. (2016), we study how the

identification of DDCMs with hyperbolic discounting is facilitated by the presence of a ter-

minating action.6 When an agent chooses a terminating action, the decision problem is

immediately terminated and there are no more choices to be made in the future. The pres-

ence of a terminating action considerably simplifies the mapping between choice probabilities

and value functions in this setup. Most importantly, differencing the choice probability con-

trasts (between an arbitrary action and the terminating action) across two periods results in

a simple term that contains the discount factor, because the continuation value associated

with the terminating action K is zero and the flow utilities cancel out because of the station-

arity assumption. This facilitates expressing the discount factors as functions of the observed

choice probabilities in two consecutive periods, which can be exploited for identification.

In the main section of this paper, we show how this logic can be extended to general

models of hyperbolic discounting with both sophisticated and naive agents. An important

feature of hyperbolic discounting models is that there is a difference between the intertem-

poral tradeoff between today and the future and the relative tradeoff between any two future

periods. This divergence substantially complicates the relationship between the choice prob-

abilities and the value functions established in Arcidiacono and Miller (2011, Lemma 1).

Moreover, additional challenge arise in the case of naive agents, because their presently

perceived future behavior and the actual future behavior will not coincide; therefore, one

cannot simply use observed actions in the future to recover the current self’s beliefs about

the future behavior. Consequently, comparing variation in the choice probabilities across two

periods is not enough. However, it is possible to achieve identification by differencing func-

tions of the choice probabilities across one additional period, which introduces an additional

adjustment term.

5Similarly to Abbring, O. Daljord, and Iskhakov (2019), Tsubota (2021) studies identification of the
sophisticated agent case in a finite horizon framework without a terminating action. He does not require
data on the final period, but requires stronger exclusion restrictions on the flow utility function.

6Identification using a terminating action can be interpreted as a special case of exploiting a finite de-
pendence property, see, for example, Arcidiacono and Miller (2011).
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Our identification strategy formalizes the often-used intuition that variation in CCPs

over time is informative about the discounting parameters, if the current utility levels are

held constant or are controlled for. The stationarity of the flow utility can be interpreted

as a special case of an exclusion restriction. Exclusion restrictions are regularly exploited

to identify discount factors in dynamic models. For both the sophisticated and the naive

agent case, we show that it is not necessary to impose a normalization on the flow utility

of a reference action, which is often done in empirical work, but can be detrimental for

counterfactual simulations.

We provide two sets of formal identification result. First, we show that, if the final three

periods in the data are observed, both the preferences of the sophisticated and the naive

agent are identified without any special data on agents’ beliefs. In this case, identification is

facilitated by the fact that one can directly recover the flow utility contrasts from behavior

in the final period. This allows us to treat the flow utilities as known in periods T − 1 and

T − 2 and observed behavior in these periods can be used to identify the two discounting

parameters, i.e., the long-run discount factor and the present-bias parameter. Moreover, we

show that the discount factors of the sophisticated agent can be recovered in closed form

using an OLS estimator.

Second, if the final periods are not observed, one can identify the preferences of the

sophisticated agent with only four consecutive periods of data (t − 3, t − 2, t − 1, and t).

This is because we can express the perceived long-run value function as a function of the

discount factors, the flow utility associated with the terminating action, and data on the

choice probabilities from three periods. With one additional period of data, one can exploit

the fact that the flow utilities backed out using (t − 3, t − 2, t − 1) have to be identical to

the ones backed out using (t− 2, t− 1, t), which provides overidentifying restrictions to pin

down the discount factors.7

Finally, we use Monte Carlo simulations to show that our estimators work well in simu-

lations and provide step-by-step guidance on how to implement our identification and esti-

mation strategy in practice. We also illustrate the biases introduced by imposing a wrong

normalization on the flow utility. These results are in line with recent research on how

the normalization of a reference utility impacts counterfactual simulations, see, for exam-

ple, Norets and Tang (2014), Aguirregabiria and Suzuki (2014), and Kalouptsidi, Scott, and

Souza-Rodrigues (2021).

7This approach can also be applied, if the final periods are observed in the data, but one is not willing
to assume that the continuation value after the final period is zero.
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Related literature. This paper is related to two strands of literature. First, our identifica-

tion strategy builds on a small literature that uses terminating actions to identify DDCMs.8

Blevins et al. (2020) study the reverse mortgage (HECM) industry and exploit the pres-

ence of multiple terminating actions to identify consumers’ discount factor in a model with

exponential discounting. Similarly to our strategy, they do not need to impose a normal-

ization on the flow utility and do not require to observe the final period in the data either.

However, we study more general time preferences, i.e., hyperbolic discounting of both so-

phisticated and naive agents.

Bajari et al. (2016) study the subprime mortgage market using a model of exponential

discounting. They show how a terminating action allows the researcher to identify the model

without imposing a normalization on the flow utility as long as the final period is observed.

In contrast to their study, we fully exploit the recursive structure of the dynamic decision

problem with a terminating action to show that even when the final period is not observed,

we do not have to impose a normalization on the flow utility to identify the model. Even more

importantly, we show that their line of argument can be extended to the much richer model

setup with hyperbolic discounting and both sophisticated and naive agents. Ø. Daljord,

Nekipelov, and Park (2019) provide an extension of Bajari et al. (2016) to general discount

functions and general exclusion restrictions beyond stationary flow utilities. However, they

require a normalization of the flow utility of a reference action, which can be detrimental

for counterfactual simulations. In addition, they do not allow for naive agents and require

to observe the final period in the data. We relax both of these restrictions and therefore

provide more general identification results.

Second, there is a small but growing literature on the identification of DDCMs with

hyperbolic discounting. As one of the earliest empirical papers on hyperbolic discounting,

Fang and Wang (2015) proposes an identification condition for partially naive agents in

infinite horizon DDCMs. Abbring and Ø. Daljord (2020a) suggest some improvements over

Fang and Wang (2015). In a similar spirit, Chan (2017) estimates a DDCM with hyperbolic

discounting factor to analyze welfare dependence. Abbring, O. Daljord, and Iskhakov (2019)

study the identification of discounting parameters and nonparametric utility functions only

for sophisticated agents. They do not assume the presence of a terminating action and exploit

8There are several papers who study dynamic decision problems with a terminating action. However,
none of them allows for hyperbolic discounting. Kalouptsidi (2014) investigates the bulk shipping market
and firm (or ship) exit behavior as a terminating action. De Groote and Verboven (2019) estimate a model
of solar panel adoption behavior, in which a consumer exits the market once she adopts the solar panel and
thus adopting is a terminating action. Eckstein and Wolpin (1999) develop a model of obtaining education
and work decision, in which dropping out of school is the terminating action. Colas, Findeisen, and Sachs
(2021) design the optimal college financial aid and explore college entering and dropout decisions. Student
dropout is the terminating action.
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general exclusion restrictions across time, actions or states. Conceptually our identification

strategy is similar to theirs in that we also exploit polynomial equations in the discount

factors. However, when applied to their setup, our estimator for the discount factor simplifies

to an OLS estimator.

Mahajan, Michel, and Tarozzi (2020) develop a model of time preferences for three types

of agents (time-consistent, sophisticated, and naive), as well as the weights of these types in

the population. They apply the model to study the demand for insecticide-treated nets in

rural India. Similarly to Abbring, O. Daljord, and Iskhakov (2019) they rely on exclusion

restrictions to identify time preferences. In particular, they use purposefully collected data

shifting agents’ beliefs, which are assumed to be excluded from the flow utility. Our iden-

tification approach differs from theirs in crucial ways. Most importantly, our identification

strategy does not require any special data about agents’ beliefs and relies only on data on

states and observed choices. Compared with both Abbring and Ø. Daljord (2020a) and Ma-

hajan, Michel, and Tarozzi (2020), who derive identification based on backward induction

from the final period, we obtain identification of the discount factors without observing the

final period. This is an important distinction, because for many applications, data might

only be available for a short panel, which does not cover the final period. Finally, the ter-

minating action allows us to avoid a normalization on the flow utility and we can show

identification for the naive agents’ time preferences without any data on agents’ beliefs.

Heidhues and Strack (2021) provide a strong negative identification result for a specific

binary choice model of task completion. In particular, they show that when the flow utility

is determined by iid draws from an unknown distribution, time preferences are generically

unidentified unless information on the agents’ continuation values are observed. We consider

our identification results complementary to their nonidentification result and show for a more

conventional discrete choice setup, in which the unobservable shock is additively separable

and drawn from a known distribution, how the presence of a terminating action can be used

to identify hyperbolic time preferences together with the agents’ flow utilities.

Levy and Schiraldi (2023) study the identification of time preferences using choice set

variation in an infinite horizon DDCM. There are several important differences between

their paper and ours. Most importantly, in order to identify hyperbolic time preferences

they require that the agent has access to both an absorbing choice, that commits her to

choosing that action in all future periods, and an additional choice that allows the agent to

commit already today to the absorbing choice in several periods from now without restricting

her choice in the next period (Levy and Schiraldi, 2023, Theorem 4). Without the additional

commitment choice, their approach is only able to identify time-consistent preferences. In

contrast, our identification strategy purely relies on the presence of a terminating action
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to identify hyperbolic time preferences. Therefore, our results are not a special case of the

results in Levy and Schiraldi (2023). Moreover, they focus on the hyperbolic time preferences

of a sophisticated agent only, while we also provide identification results for the naive agent.

The rest of the paper is organized as follows. Section 2 describes a general DDCM

setup with hyperbolic discounting. Section 3 is the key section of the paper and discusses

conditions for and derivation of the identification of the model primitives for both the so-

phisticated and the naive agent. In Section 4, we present several estimators that build on

our identification proofs. Section 5 illustrates that our proposed estimators perform well in

simulations. Section 6 concludes.

2 General Hyperbolic Discounting: Model Setup

Consider a DDCM with decision periods indexed by t = 1, . . . , T , where T is finite.

Let ut represent the individual’s utility in period t. The (expected) life-time utility for an

individual in period t is given by

Ut(ut, ut+1, · · · , uT ) ≡ ut + βδ
T∑

t′=t+1

δt
′−t−1Eut′ , (1)

where β ∈ (0, 1] captures the individual’s present-bias, and δ ∈ (0, 1) is the exponential

discount rate. This setup nests the exponential discounting framework as a special case, i.e.,

β = 1 indicates that the agent does not have present-bias.

The agent chooses her action in every period t to maximize her expected life-time utility.

The expectation is taken over the distribution of the future utilities, which are determined

by the future state variables (observed and unobserved) and the actions taken by the future

selves. Consequently, a forward-looking agent needs to predict how she will behave in the

future, which depends on how the future selves discount her future utilities. We distinguish

two types of present-biased agents: sophisticated and naive. A sophisticated agent knows

that her future self is also present-biased and maximizes the life time utility characterized

by Equation (1). A naive agent, however, believes that her future self is time-consistent and

will maximize the life-time utility characterized by Equation (1) with β = 1 in any future

period.

To illustrate the difference between a sophisticated and a naive agent, consider the deci-

sion process of a consumer who considers the adoption of a solar PV system: A sophisticated

agent is aware that it is difficult to make a large upfront investment today, and that it will

also be difficult to make that investment in the future, even though she knows that from

a long-term perspective she should make the investment. So although there is a conflict
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between the current self and the long-term self, the agent is aware of this conflict.

In contrast, a naive agent thinks that it is hard to invest only today. The reason is that

she believes that her future self is time-consistent and maximizes her life-time utility, even

though the actual future self follows the same present-biased preferences as the current self.

Therefore, there exists a conflict between the future self as perceived by the current self and

the actual future self in the future. As a consequence, a naive agent tends to repeatedly

postpone unpleasant actions.

The dynamic process can be summarized as follows. In each period t, the agent chooses an

action k from a choice set D = {1, 2, . . . , K}. Prior to making the choice, the agent observes

the state variables xt ∈ X = {x1, · · · , xJ} and ϵt = {ϵ1,t, . . . , ϵK,t}, where xt are observable

to both the agent and the econometrician, and ϵt are only observable to the agent. Following

the existing literature, we assume that the action-specific private information enters the

agent’s utility function in an additively separable way.

Assumption 1 (Additive separability) We assume that the per-period utility has the follow-

ing additively separable feature:

ut(xt, ϵt, k) = uk,t(xt) + ϵk,t. (2)

The state variables xt are assumed to have finite support X and follow a stationary Markov

process controlled by the agent’s choice. We denote the state transition by Qk(x
′|x), where

k ∈ D is the chosen action. The private-information shocks ϵk,t are independent of xt,

prior states, and past choices. The shocks are also independent over time, across choices,

and have joint distribution G that is absolutely continuous with respect to the Lebesgue

measure. These assumptions allow us to factor the transition distribution function for (xt, ϵt)

as follows:

Assumption 2 (Conditional independence) The state transition is assumed to have the

following structure:

Q(xt+1, ϵt+1|k, xt, ϵt) = Qk(xt+1|xt)G(ϵt+1). (3)

Before characterizing the agent’s optimization decision, we introduce some notation. Let σt
τ ,

with τ > t, denote the period t-self’s belief about her period τ -self’s behavior. Moreover, we

define σt
t+1 ≡ {σt

t+1, . . . , σ
t
T} as the period t-self’s belief about all her future selves’ behavior.9

9It is noteworthy that the beliefs of the t-self and the the (t+ 1)-self regarding the future selves starting
from period t+ 2 are identical, i.e., σt

t+2 = σt+1
t+2 .
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The current choice-specific value function in period t is the expected overall utility that the

agent receives, which depends on her perception of her future selves’ behavior. Specifically,

we have

wk,t(xt;σ
t
t+1)

≡ uk,t(xt) + βδEϵt+1,xt+1,...ϵT ,xT

[(
uσt

t+1,t+1(xt+1) + ϵ(σt
t+1)

)
+ δ

(
uσt

t+2,t+2(xt+2) + ϵ(σt
t+2)

)
. . .+ δT−t−1

(
uσt

T ,T (xT ) + ϵ(σt
T )
)
|k, xt

]
= uk,t(xt) + βδExt+1Eϵt+1

[(
uσt

t+1,t+1(xt+1) + ϵ(σt
t+1)

)
+δ Eϵt+2,xt+2,...ϵT ,xT

((
uσt

t+2,t+2(xt+2) + ϵ(σt
t+2)

)
. . .+ δT−t−2

(
uσt

T ,T (xT ) + ϵ(σt
T )
)
|xt+1, σ

t
t+1

)
|k, xt

]
= uk,t(xt) + βδExt+1

[
vt+1(xt+1;σ

t
t+1)|k, xt

]
, (4)

where vt+1(xt+1;σ
t
t+1) is the perceived long-run value function, i.e., the continuation value

function that an agent in period t believes to encounter in period t + 1 if her future selves

behave according to strategies σt
t+1. It is defined as

vt+1(xt+1;σ
t
t+1) ≡ Eϵt+1{uσt

t+1,t+1(xt+1) + ϵ(σt
t+1) + δExt+2

[
vt+2(xt+2;σ

t
t+2)|xt+1, σ

t
t+1

]
},

(5)

where vt+2(xt+2;σ
t
t+2) is the value function under the perceived future self’s strategy profile

σt
t+2 ≡ {σt

τ}Tτ=t+2 with the unobserved state variable ϵt+2 integrated out. Note that in

the expression above the expected value is multiplied by the discount factor δ instead of

βδ, because the present-bias parameter β does not directly enter into the intertemporal

rate of substitution between any two future periods from the point of view of the present.

To summarize, a forward-looking agent with present bias faces a dynamic tradeoff that

consists of two components. First, compared to the current utility, the total future utility is

discounted disproportionally by factor βδ. Second, each period in the future is discounted

geometrically by the factor δ.

We focus on perception perfect strategies (O’Donoghue and Rabin, 1999), which are strat-

egy profiles σ ≡ {σt,σ
t
t+1, ∀t} such that each σt is a best response to her perceived future

strategy profile σt
t+1, so that

σt(xt, ϵt) = argmax
k∈D

{wk,t(xt;σ
t
t+1) + ϵk,t}. (6)

Following the literature on two-step estimation initiated by Hotz and Miller (1993), we

define the conditional choice probability (CCP) as the probability that a specific action is

chosen given the current state variables. Since the mapping between the decision rule and
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the CCPs is one-to-one (Hotz and Miller, 1993), we can characterize the agent’s optimal

decision by equilibrium CCPs instead of the decision rules. In equilibrium, the CCPs are

determined by

pk,t(xt) ≡ Pr[σt(xt, ϵt) = k] = Pr[wk,t(xt;σ
t
t+1) + ϵk ≥ wj,t(xt;σ

t
t+1) + ϵj, ∀j ̸= k], k ∈ D;x ∈ X

≡ Φk(w1t, ..., wK,t) ∀k ∈ D;∀x ∈ X , (7)

where the mapping Φk depends on the distribution of the shocks. Let pt(xt) collect the CCPs

in period t of all actions conditional on the state variable xt.

In the finite horizon setting, which is the focus of this paper, a forward-looking agent

solves the model using backward induction, starting from the final period with the utility

specified as wk,T (xT ) = uk,T (xT ). Therefore, the equilibrium CCPs are non-stationary and

equilibrium existence does not require the flow utility to the stationary.

Sophisticated agent. We first characterize the equilibrium CCPs of the sophisticated

agent. Let Pt denote the collection of the equilibrium CCPs for all (observed) states xt

in period t, i.e., Pt ≡ {pt(xt), xt ∈ X}. Moreover, Pt+1 ≡ {Pt+1, . . . , PT}, collects all

equilibrium CCPs starting from period t + 1. The sophisticated agent’s perception of the

future self’s strategies is consistent with the strategy actually chosen by the future self.

That is, σt
t+1 is consistent with the actual equilibrium CCPs Pt+1 that all her future selves

adopt. Therefore, we can use Pt+1 to represent σt
t+1. Similar to Arcidiacono and Miller

(2011, Lemma 1) and Abbring, O. Daljord, and Iskhakov (2019, Eq. 2, 9–13), the perceived

long-run value function vt+1(xt+1;Pt+1) for a sophisticated agent can be written as

vt+1(xt+1;Pt+1)

= Eϵt+1

[
ut+1(xt+1, Pt+1) + ϵ(Pt+1) + δExt+2 [vt+2(xt+2;Pt+2)|xt+1, Pt+1]

]
= Eϵt+1

[
max
k∈D

[wk,t+1(xt+1,Pt+2) + ϵ(kt+1)] + δ(1− β)Ext+2 [vt+2(xt+2;Pt+2)|xt+1, Pt+1]

]
= Eϵt+1

[
max
k∈D

[wk,t+1(xt+1,Pt+2) + ϵ(kt+1)]

]
+ δ(1− β)Ext+2 [vt+2(xt+2;Pt+2)|xt+1, Pt+1]

= Eϵt+1 max
k∈D

[wk,t+1(xt+1,Pt+2) + ϵ(kt+1)] + δ(1− β)
∑

xt+2∈X

vt+2(xt+2;Pt+2)QPt+1(xt+2|xt+1)

= mK(pt+1(xt+1)) + wK,t+1(xt+1;Pt+2) + δ(1− β)
∑
k

∑
xt+2

vt+2(xt+2;Pt+2)Qk(xt+2|xt+1)pk,t+1(xt+1),

= mK(pt+1(xt+1)) + wK,t+1(xt+1;Pt+2) + δ(1− β)
∑
xt+2

vt+2(xt+2;Pt+2)Q̄t+1(xt+2|xt+1), (8)
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where Q̄t+1(xt+2|xt+1) ≡
∑
k

Qk(xt+2|xt+1)pk,t+1(xt+1) andmK(p(x)) = Eϵmaxk [wk(x)− wK(x) + ϵk]

is determined by the distribution of the ϵ-shocks. When ϵt follows an extreme value distri-

bution, mK(p(x)) = γ − log(pK(x)), where γ is the Euler constant. For ease of nota-

tion, we assume that ϵt follows a mean zero type one extreme value distribution so that

mK(p(x)) = −log(pK(x)). The first equality holds by definition of the perceived long-run

value function in Equation (5). The second equality follows by using the definition of the

current choice-specific value function from Equation (4). The third equality holds because

ϵt+1 affects the future value only indirectly through pt+1. The first half of the fourth equality

holds by the fact that Pt+1 is the agent’s optimal strategy. The first half of the fifth equality

uses the definition of the social surplus function (Manski, McFadden, et al., 1981, Ch.5); the

second half is obtained by taking the expectation over the distribution of the shocks, which

is equivalent to taking the expectation over the distribution of the optimal actions.

Naive agent. The naive agent’s actual behavior in the future diverges from the optimal

strategies that the current self perceives today. Therefore, we cannot use the observed

future CCPs to represent the current self’s belief. Consequently, σt
t+1 is inconsistent with

the equilibrium CCPs Pt+1 in the data. To formalize the decision process of the current self,

we first characterize the future self’s decision problem as perceived by the current self. We

first introduce the choice-specific value function of the next period self as perceived by the

current self

ztk,t+1(x;σ
t
t+2) = uk,t+1(x) + δ

∑
xt+2

vt+2(xt+2;σ
t
t+2)Qk(xt+2|xt+1), (9)

where σt
t+2 describes the current self’s perception of her future self’s choice. From the

perspective of the naive agent’s current self, σt
t+1 is determined by

σt
t+1(xt+1, ϵt+1) = argmax

k∈D
{ztk,t+1(xt+1;σ

t
t+2) + ϵk,t+1}. (10)

The actual decision in period t + 1, however, is determined by the choice-specific value

function of the (t+ 1)-self wk,t+1(x;σ
t+1
t+2), which is given by

wk,t+1(x;σ
t+1
t+2) = uk,t+1(x) + βδ

∑
xt+2

vt+2(xt+2;σ
t+1
t+2)Qk(xt+2|xt+1), (11)

and characterizes how the current self evaluates the deterministic component of the payoff

from choosing k. In contrast, ztk,t+1(x;σ
t
t+2) represents how the current self believes how her

next-period self to evaluate the payoff from choosing k. Formally, the key difference between
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wk,t+1(x;σ
t+1
t+2) and ztk,t+1(x;σ

t
t+2) is that the continuation value in the former is discounted

by βδ, while the continuation value in the latter is discounted by δ.

We define the future CCP as perceived by the current self ptk,t+1(xt+1) as

ptk,t+1(xt+1) = Pr[ztk,t+1(x;σ
t
t+2) + ϵk,t+1 ≥ ztj,t+1(x;σ

t
t+2) + ϵj,t+1, ∀j ̸= k]. (12)

Let P t
t+1 denote the collection of the period t + 1 CCPs as perceived by the period t self.

Moreover, P t
t+1 collects the perceived CCPs for all future periods starting from t+ 1. Even

though the current self’s belief is different from the future self’s actual behavior, the current

self’s beliefs can be expressed as a function of the perceived future self’s CCPs, so that P t
t+1

is consistent with σt
t+1. We can rewrite the perceived long-run value function vt+1(xt+1;P t

t+1)

for a naive agent as

vt+1(xt+1;P t
t+1) = Eϵt+1{zP t

t+1,t+1(xt+1,P t
t+2)}

= Eϵt+1 max
k∈D

[
zk,t+1(xt+1,P t

t+2)
]

= mK(p
t
t+1(xt+1)) + zK,t+1(xt+1;P t

t+2). (13)

Consequently, the equilibrium CCPs for a naive agent are characterized by Equations 7, 9,

and 13. Note that the perceived CCPs P t
t+1 are never observed in the data, although they

affect the equilibrium CCPs of the current self. This greatly complicates the identification

strategy.

3 Identification Results

In this section, we show identification of the hyperbolic discounting parameters jointly

with the payoff primitives in a DDCM with a finite horizon. We present identification results

for both the sophisticated and the naive agent. In Section 3.1 we consider the case in which

the researcher observes the final periods in the data, which is the setting that most of the

existing literature studies. In Section 3.2 we extend the identification to the scenario in

which the researcher does not observe the information in the final periods.

Throughout the paper, we assume that we know the type of each decision maker, i.e.,

whether she is time-consistent, sophisticated, or naive. In practice, a decision maker’s type

might be unknown, which results in observing a mixture of all three types in the data. By

exploiting the panel data structure and relatively standard assumptions, such as that the

type is time invariant, we can identify and estimate the type-specific CCPs using insights

from the measurement error or finite mixture literature, see, for example, Hu (2008). After

the type-specific CCPs are identified, the main challenge is to map each set of identified
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CCPs to one of the three types. This step typically requires additional assumption on how

exactly the types differ from each other, which depends crucially on the specific application.

Once we have mapped each type to its equilibrium CCPs, we can follow the identification

results developed in this paper using the type-specific CCPs to identify the flow utilities and

the discount factors separately for each type.

Throughout, we rely on several assumptions. First of all, our key assumption is that

there is some terminating action available to the agent.

Assumption 3 Action K is a terminating action.

Intuitively, the presence of the terminating action facilitates the identification similarly to

the information in the final period in the sense that once this action chosen, there is no

future involved. However, the choice of the terminating action depends on the future payoff,

because the agent chooses among all possible options and other choices depend on the future

payoffs.

For ease of illustration, we assume that the unobserved shocks follow a type-1 extreme

value distribution, so that the equilibrium CCPs have the logit structure:10

pk,t(xt) =
wk,t(xt;σ

t
t+1)∑

j∈D wj,t(xt;σt
t+1)

. (14)

We can then transform the log odds ratios of the equilibrium CCPs into contrasts of the

choice-specific value functions:

ϕkK,t(x) ≡ logpk,t(x)− logpK,t(x) = wk,t(x)− wK,t(x), (15)

which contain information about the flow utility, the discount factor, and the present-bias

parameter. This equation implies that the log odds ratio is determined by the difference in

flow utilities associated with the two actions (k and K) and the continuation value integrated

over the future uncertainty as captured by the state transition matrix Qk, instead of the

difference between the transition matrices Qk − QK . This allows us to fully represent the

expected utility as a function of the model primitives, in particular, a function of the discount

parameters δ, β, the state transition matrix Qk, and the future ex ante value function vt+1.

Note that the transition matrix can be directly identified from the data under the standard

assumption that the agent has rational expectations about the future evolution of the state

variables.

Our second key identification assumption is that the flow utility is stationary. Specifically,

to identify the discount parameters, we first control for the direct impact of the flow utility,

10Conceptually our arguments go through for more general distributions of the error term.
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uk,t − uK,t in Equation (15) by differencing the log odds ratios in two consecutive time

periods. If the agent’s flow utility differences (across actions k and K) do not change over

time, which is the case if the flow utility is stationary, the flow utility terms in the log odds

ratio equation cancel out. Therefore, we make the following assumption.

Assumption 4 (Stationary flow utility) The flow utility is time-invariant.

uk,t(x) = uk(x), ∀x ∈ X . (16)

The stationarity of the flow utility is reasonable in many economic applications, and this

assumption is frequently used in the literature, see, for example, Bajari et al. (2016), Blevins

et al. (2020), and An, Hu, and Xiao (2021).

Abbring, O. Daljord, and Iskhakov (2019) discuss that identification of the hyperbolic

discounting parameters for a sophisticated agent can be achieved by using a suitable nor-

malization of the flow utility and exclusion restrictions, which either can be satisfied by a

stationary utility function so we can exploit the variation of CCPs across time, or by an

additional state variable that is excluded from the current utility but affects the future value

by shifting the state transition so that one can exploit the variation of CCPs for different

values of such an exclude state variable.

3.1 Setting 1: Final Periods Observed

We first study the identification of both the sophisticated and the naive agent’s prefer-

ences in a scenario in which the researcher observes the data in the final three periods, i.e.,

{pT ,pT−1,pT−2} are known. This is the case that has been studied in the existing litera-

ture. In the following we show how the presence of a terminating action allows us to derive

identification under more general assumptions, in particular, our strategy does not require

a normalization of the flow utility.

First of all, in the final period, the optimal decision is the same regardless of the agent’s

type, because there is no future to discount, if we assume the continuation value is zero.

Consequently, independently of whether the agent is time-consistent, sophisticated or naive,

we can directly recover her flow utility contrasts using the log odds ratios in the final period.

Our starting point is the log odds ratio vector which is obtained by stacking the log odds

ratios from Equation (15) for each state value x:

ϕkK(pT ) = wk,T −wK,T = uk − uK . (17)

The stacked choice-specific value function wk,t and flow utility function uk are defined analo-
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gously. Observing the action in the final period greatly simplifies the identification procedure

for both sophisticated and naive agents because we can treat the utility contrast as known

when exploiting information on log odds ratios in earlier periods. Moreover, with a nor-

malization assumption on the flow utility uK , the flow utility associated with other actions

uk is identified as in the existing literature. However, we show that such a normalization

assumption is not necessary when there is a terminating action. We demonstrate in Section 5

that imposing such a normalization on the flow utility can substantially affect counterfactual

simulations.

For now, we assume that the utility contrasts are known11 and exploit the variation in

other periods to identify the flow utility separately for each action and the discount factors.

In the penultimate period T − 1 the current self has to predict the optimal strategy of

her T -self.12 The sophisticated (T − 1)-self correctly believes that her T -self will discount

hyperbolically when she enters period T . The naive (T − 1)-self wrongly believes that her

T -self is time-consistent, even though she will not be once she is in period T . However,

since the T -self faces a static decision, it does not matter how she discounts the future.

Consequently, the divergence between the naive (T −1)-self’s perception about her behavior

in period T and her actual behavior in T does not matter, i.e., pT−1
T = pT . It is worth noting

that this feature is only true for the second to final period. Therefore, we do not have to

take a stance about the agent’s time preference, and we can write the log odds ratio of the

CCPs in period T − 1 as

ϕkK(pT−1) = uk − uK + βδQkvT (p
T−1
T )

= uk − uK + βδQkvT (pT )

= ϕkK(pT ) + βδQk (−logpKT + uK) , (18)

where vT (p
T−1
T ) is the stacked ex ante value function over x, and Qk is a J × J transition

matrix with element (i, j) containing Qk(xt+1 = j|xt = i). The first equality holds by

definition and the fact that K is a terminating action. The second equality holds because

pT−1
T = pT for both the sophisticated and the naive agent. The third equality holds by the

one-to-one mapping between ex ante value function and the choice-specific value function

and the corresponding CCPs.

Instead of imposing a normalization condition on the flow utility as in the existing lit-

erature, we recover the flow utility function uK as a function of the two discount factors δ

and β, which requires the following rank condition.

11Usually the utility contrasts can be nonparametrically recovered from data on the CCPs following the
identification results of Magnac and Thesmar (2002).

12To simplify notation, we label an agent’s self in period t as t-self.
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Assumption 5 (Full rank condition) There exists an action k other than the terminating

action K, such that the state transition matrix Qk, controlled by action k, has full rank.

This rank condition imposes some restrictions on the state transition controlled by the

non-terminating actions. Note that this rank condition is directly testable, because we

can estimate the state transition matrix from the observed data. The technical advantage

of considering a terminating action is that such a full rank condition imposes very mild

restrictions on the transition matrix of the non-terminating action, namely it only requires

full rank of Qk itself. Without the presence of a terminating action we require full rank of

the transition matrix difference (Qk −QK), which is trivially rank-deficient because every

column of the transition matrices Qk and QK sums to 1, so that the difference of the two

sums is zero.

The full rank condition and the data on the final two periods allow us to identify the

flow utility associated with the terminating action as a closed-form function of the data and

the two discount factors because the utility contrasts uk − uK are known. That is,

uK = log(pKT )−
1

βδ
Q−1

k ∆ϕkK(pT ), (19)

where ∆ϕkK(pT ) = ϕkK(pT ) − ϕkK(pT−1). Consequently, the flow utility associated with

other actions is also identified as a function of the compound discount factor βδ. Mahajan,

Michel, and Tarozzi (2020) exploit a normalization assumption on the flow utility, i.e., uK

is known, to identify the product of the two discount factors directly from Equation (18).

So far we have exploited all variation in the last two periods, in which sophisticated and

naive agents behave identically so that the identification procedure is the same. However,

the identification arguments using the third to final period, T − 2, differ for sophisticated

and naive agents, because of their different perception of their (T − 1)-self. Consequently,

we investigate the two types of agents separately in the following two subsections and show

that identification does not require any normalization assumptions.

3.1.1 Sophisticated agents

Given that uK is already identified as a function of the two discount factors, we further

exploit variation of the CCPs in period T − 2. Specifically, for period T − 2, the differences

between the log odds ratios ϕkK(pT−2) for a sophisticated agent are

ϕkK(pT−2) = uk − uK + βδQkvT−1(pT−1)

= uk − uK + βδQk

(
−logpKT−1 + uK + δ(1− β)Q̄T−1(−log(pKT ) + uK)

)
,

(20)
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where the weighted state transition matrix Q̄T−1 is a J × J matrix with element (i, j) equal

to
∑
k

Qk(xT = j|xT−1 = i)pk,T−1(xT−1 = i). Equation (20) is obtained by substituting in the

recursive relationship in the perceived long-run value function as specified in Equation (8).

Almost all components in Equation (20) are identified from data on the last two periods.

Only the two discount factors are unknown.

Comparing the log odds ratios in period T−1 and T−2, we can see that the term δ(1−β)

enters the future value of period T − 2 but not the future value of T − 1. Consequently,

the difference between the log odds ratios for period T − 1 and T − 2 provides variation to

identify the two discount factors separately. That is,

∆ϕkK(pT−1) ≡ ϕkK(pT−1)− ϕkK(pT−2) (21)

= βδQk

(
log(pKT−1)− log(pKT ) + δ(1− β)Q̄T−1

1

βδ
Q−1

k ∆ϕkK(pT )

)
,

which follows from plugging in Equation (20) and substituting the last term in Equation (20)

using Equation (18). Equation (21) provides J equation but only contains the two discount

factors as unknowns. Furthermore, this system of equations is linear in both δ and δβ:

∆ϕkK(pT−1) =
[
A B

]
×

[
δβ

δ

]
≡ Ω(pT−2,pT−1,pT )×

[
δβ

δ

]
, (22)

whereA ≡ Qk

[
log(pKT−1)− log(pKT )− Q̄T−1Q

−1
k ∆ϕkK(pT )

]
andB ≡ QkQ̄T−1Q

−1
k ∆ϕkK(pT ).

Consequently, matrix Ω(pT−2,pT−1,pT ) has size J×2, which can be identified and estimated

from the data directly. Under a full rank condition for this coefficient matrix, we can sepa-

rately identify the two discount factors β and δ.

Assumption 6 Matrix Ω(pT−2,pT−1,pT ) has full column rank, i.e., rk (Ω(pT−2,pT−1,pT )) =

2.

This condition is not very restrictive in practice in the sense that it is satisfied as long as

there exists one row of the matrix that cannot be expressed as a linear combination of any

of the other rows. When the support of the state x is large, i.e., J is large, the choice of

the rows becomes large so it is easier to satisfy this condition. However, if this assumption

fails, the model is under-identified, meaning that one of the parameters, say δ, can always

be expressed as a function of the other parameter, β. We summarize the above discussion

as

Proposition 1 If Assumptions 1 to 6 are satisfied and all agents are sophisticated, then all
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flow utility functions, the exponential discount factor δ, and the present-bias parameter β are

identified.

There are several noteworthy distinctions between our identification strategy and those

of the existing literature. First, our identification mainly exploits the variation of the CCPs

over time with the assumption of a stationary flow utility. The stationary assumption can

be interpreted as one type of exclusion restriction, namely that time t is excluded from

the flow utility function. In contrast, the existing literature relies on the presence of an

additional state variable that is excluded from the flow utility function. The stationarity of

the flow utility might be a restrictive assumption in some cases. However, we only require

the stationary for a short period; for the last three periods in Proposition 1 and for four

consecutive periods in Proposition 4 below. These assumptions are less restrictive than it

may seem because an agent’s preferences might not change over parts of the data sample

even though over the whole sample her preferences might change. Once we identify the

discount factors using the subset of periods with constant flow utility, we can identify the

time-specific flow utility in any other period.

Second, we exploit the presence of a terminating action in order to avoid the normalization

assumption on the flow utility, which the existing literature usually has to impose. This is

the key difference between our identification strategy and both Abbring, O. Daljord, and

Iskhakov (2019) and Mahajan, Michel, and Tarozzi (2020), who require a normalization

of the flow utility associated with a reference action, that yields either zero or a known

utility. For example, Mahajan, Michel, and Tarozzi (2020), assume that uK is known, and

that there exists an state variable that affects the continuation value but is excluded from

the flow utility. Imposing a normalization condition can be problematic for counterfactual

analyses as discussed in a general setting in Kalouptsidi, Scott, and Souza-Rodrigues (2021).

We provide an illustration of the generated bias in our simulations in Section 5.

3.1.2 Naive agents

In this section we provide identification results for the naive agent by further exploiting

the information in period T − 2. For the third to last period (T − 2) we can write the log

odds ratios as

ϕkK(pT−2) = uk − uK + βδQkvT−1(p
T−2
T−1)

= ϕkK(pT ) + βδQkvT−1(p
T−2
T−1), (23)

where pT−2
T−1 denotes the CCPs that the naive (T −2)-self believes to follow in T −1. The first

equality holds because of the stationarity of the flow utility, the second equality holds by
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plugging in the identified utility contrasts from choices in period T . Note that the perceived

CCPs for period T − 1 by the (T − 2)-self differ from the actual behavior of the (T − 1)-self,

i.e., pT−2
T−1 ̸= pT−1. This is because in the (T−2)-self’s perception, the T−1-self is discounting

period T ’s utility using δ while the actual (T − 1)-self discounts the period T utility using

δβ.

However, choices in period T −2 reveal information about the (T −2)-self’s perception of

the behavior of the (T − 1)-self and the T -self. Instead of using the actual actions of future

selves to recover the current self’s beliefs, we use the current self’s choices to recover her

perceptions about the future. That is, from Equation (23) and with the full rank condition

on the transition matrix, imposed by Assumption 5, we have

vT−1(p
T−2
T−1) =

1

βδ
Q−1

k (ϕkK(pT−2)− ϕkK(pT )) . (24)

From the perspective of the (T − 2)-self, the (T − 1)-self is time-consistent, so she takes

into account only the exponential discount factor. The choice-specific value function of the

(T − 1)-self as perceived by the naive (T − 2)-self can be written as13

zT−2
kT−1 = uk + δQkvT (p̃T )

= uk + δQkvT (pT )

= uk −
1

β
∆ϕkK(pT ), (25)

where vT (p̃T ) captures how the (T − 2)-self believes her (T − 1)-self‘’ to think about period

T . Note that the (T − 2)-self knows that the (T − 1)-self knows that the T -self faces a static

decision; therefore, the present-bias does not affect the T -self’s decision. The first equality

holds by definition, the second equality holds because the T -self faces a static decision. The

third equality holds by plugging in the relationship of δQkvT (pT ) and the log odds ratio

contrasts specified in Equation (18).

So far we can identify the ex ante value function as perceived by the (T −2)-self using her

actual actions and the (T−1)-self’s choice-specific value function in (T−2)-self’s perception.

The two components can be connected via the social surplus function (Manski, McFadden,

et al., 1981):

vT−1(p
T−2
T−1) = log

∑
k

exp(zT−2
kT−1 − zT−2

KT−1) + zT−2
KT−1

= log
∑
k

exp(zT−2
kT−1 − uK) + uK , (26)

13Note that this term is different from wkT−1, which describes the actual choice-specific value function as
considered by the current T − 1-self in T − 1.
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where the second equality holds because K is a terminating action. Consequently, by plug-

ging in the expressions of the ex ante value function identified from Equation (24) and the

choice-specific perceived value function identified from Equation (25), we have

1

βδ
Q−1

k (ϕkK(pT−2)− ϕkK(pT ))

= log

(∑
k

exp

(
ϕkK(pT )−

1

β
∆ϕkK(pT )

))
+ log(pKT )−

1

βδ
Q−1

k ∆ϕkK(pT ),

(27)

which provides J nonlinear equations in only two unknowns, namely the discount factors β

and δ.

Assumption 7 The gradient of the J restrictions has a rank of 2 at the true parameter

values, where the restrictions are defined as

Rn(β, γ) ≡ 1

βδ
Q−1

k (ϕkK(pT−2)− ϕkK(pT ))

−

[
log

(∑
k

exp

(
ϕkK(pT )−

1

β
∆ϕkK(pT )

))
+ log(pKT )−

1

βδ
Q−1

k ∆ϕkK(pT )

]
,

and the gradient is ∇Rn(β, γ) ≡

[
∂Rn

∂β
∂Rn

∂γ

]
, where γ = βδ.

Therefore, we can locally identify the two discount factors for naive agents.14

Proposition 2 If Assumptions 1 to 5 and 7 hold, all agents are naive, and if at least the

last three period of data are available, then the discount factors (β, δ) are (locally) identified

without imposing any further restrictions on the flow utility.

If Assumption 7 holds, Proposition 2 states that the set of solutions to Equation (27) is

composed of locally isolated points. If there are more than one solution to Equation (27),

global identification fails and we can only achieve local identification. In practice, however,

we can exploit the special structure of the equation to compute the full set of solutions.

It is noteworthy that this equation is linear in βδ. Therefore, we only need to do a one-

dimensional nonlinear search on 0 ≤ β ≤ 1, and get βδ in the inner loop as a function of β

by exploiting the linearity, which is not computationally demanding. Therefore, if we obtain

14We follow the definition of local identification in Rothenberg (1971). Specifically, (β, δ) are locally
identifiable, if there exists an open neighborhood of (β, δ) containing no other (β, δ) which is observation-
ally equivalent. In contrast to global identification, local identification allows for several observationally
equivalent parameter values as long as they are isolated from each other.
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an identified set, that is composed of discrete isolated points under Assumption 7, we are

still able to estimate the full set of points. If Assumption 7 fails, which seems unlikely to

happen in practice, we can only identify a continuum of solutions.

It is worth noting that we implicitly assume that the continuation value in the final

period is zero. This allows us to identify the flow utility from the actions in the final period

directly. To the best of our knowledge, we are the first to study point identification of the

naive agent’s time-preference in a DDCM framework. The existing literature mainly focuses

on identification of the sophisticated agent, with the only exception of Mahajan, Michel, and

Tarozzi (2020), which provide set identification results for the naive agent using data on the

final three periods and a normalization of the flow utility.

3.2 Setting 2: Final Periods Not Observed

In many applications, the econometrician will not have data up to the final period. For

example, in data sets on long-term financial products, such as mortgages, or long-term health

studies, one typically does not observe the final period for most individuals. Moreover, it

might be restrictive to assume that the continuation value is zero in some settings. In this

subsection, we extend our identification strategy to settings in which the final periods are

not observed in the data. This framework can also be applied if one observes the final period

but is not willing to normalize the continuation value after the final period to zero.

We start by providing identification results for the sophisticated agent. At the end of

this section we discuss why providing identification results for the native agent is much more

difficult when the final periods are not observed. Our starting point is the log odds ratio

vector (stacked over all J states x) in period t from Equation (15):

ϕkK(pt) = wk,t −wK,t = uk,t − uK,t + βδQkvt+1, (28)

Given this expression, we can difference the CCPs in two consecutive periods so that

∆ϕkK(pt+1) ≡ ϕkK(pt+1)− ϕkK(pt)

= βδQk(vt+2 − vt+1)

= βδQk(vt+2 −mK,t+1 − uK − δ(1− β)Q̄t+1vt+2)

= βδQk(I − δ(1− β)Q̄t+1)vt+2 − βδQk(mK,t+1 + uK), (29)

where t ≤ T − 1 and, if t = T − 1, vt+2 = vT+1 = 0 by definition. The first equation holds

by definition, the second equality holds by the stationary of the flow utility, and the third

equality is obtained by plugging in the definition of the ex ante value function vt+1 from
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Equation (8).15 I is a J×J identity matrix. Note that both the transition matrixQk and the

aggregated transition matrix Q̄t+1 can be identified from the data directly. The adjustment

term mK,t+1 is a known function of the distribution of the error terms ϵ. The remaining

unknowns are the two discount factors δ and β, the flow utility uK , and the future long-run

value function vt+2, which is again a function of the discount factors and the flow utility.

Next, we rewrite the recursive relationship between the perceived long-run value function

vt =

{
mK,t + uK + δ(1− β)Q̄tvt+1, for t < T

mK,T + uK for t = T
, (30)

which depends on the flow utility of the reference action and the two discount factors. This

is because the choice-specific value function wK(xt) is the same as uK(xt) since K is a

terminating action. If one observes the agent’s behavior up to the final period T , one can

simulate the perceived long-run value function by collecting the flow utility in every period

up to the final period and thus fully represent the perceived long-run value function as a

function of the observed CCPs, the discount factors, and the flow utility uK . Furthermore, if

one imposes the normalization assumption that uK,t = 0, one can express the perceived long-

run value function as a function of the discounting parameters, which allows identification

of both β and δ directly.

Instead of assuming that the data is available up to the final period and requiring the

normalization of the flow utility, we exploit the recursive structure of the perceived long-

run value function and concentrate all variation of the CCPs into functions of β and δ and

the utility associated with the terminating action. As before, our goal is to identify both

discount factors and the flow utility jointly.

To do this, we first express the perceived long-run value function vt+2 as a function of the

reference flow utility function uK and the discount factors, based on Equation (29). That

is, if the rank condition from Assumption 5 holds, we have

vt+2 ≡ ht+1,t(β, δ,uK) =
(
I − δ(1− β)Q̄t+1

)−1
(

1

βδ
Q−1

k ∆ϕkK(pt+1) +mK,t+1 + uK

)
.(31)

Note that Qk(I − δ(1 − β)Q̄t+1) has full rank, because (I − δ(1 − β)Q̄t+1) is full rank if

δ(1−β) ̸= 1, which is the case as long as there is some form of discounting. Consequently, we

can uniquely recover the perceived long-run value function if both the exponential discounting

and the present-bias parameters and the utility of the terminating action are known.

We can then exploit the recursive relationship in the perceived long-run value function

15mK,t+1 and uK stack mK(pt+1(x)) and uK(x) for all state values x, respectively.
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specified in Equation (30) and rewrite it such that it only depends on the discount factors and

the flow utility from the terminating action. All previous manipulations use the conditions

implied by the model to eliminate the other unknown primitives from this value function.

Finally, by combining Equations (30) and (31), we obtain the following key equation:

ht,t−1(β, δ,uK) = mK,t+1 + uK + δ(1− β)Q̄t+1ht+1,t(β, δ,uK). (32)

Note that this condition requires observing three consecutive periods of CCPs. It includes

J equations because there are J potential states of x; and it invovles 1 + 1 + J unknowns,

i.e., the present-bias parameter β, the exponential discount parameter δ, and the vector of

flow utilities from the terminating action uK . Consequently, we are not able to identify all

three components from Equation (32) when we use only CCPs from three periods.

In order to proceed, assume for now that the discount factors β and δ are known. In

this case we can identify the flow utility associated with the terminating action when the

equilibrium CCPs are non-stationary. Therefore, we impose the following assumption.

Assumption 8 There exists an action k such that we have pk,t(x) ̸= pk,t+1(x), for all x.

Intuitively, this assumption requires that there is enough variation of the CCPs for at least

one action over time. This assumption is a higher-level assumption in the sense that it is

imposed on endogenous components of the model instead of the model primitives. However,

this assumption is easy to satisfy by construction due to the finite horizon framework, which

usually assumes that the continuation value in the final period is zero. Moreover, it is directly

testable from the data.

Once the flow utility associated with the terminating action is identified, the identification

of the flow utilities associated with any other action j can be achieved analogously by using

the respective value contrasts between uj and the reference utility uK . We summarize our

identification results for the flow utility functions in the following proposition.

Proposition 3 If

1. the discount factors β and δ are known, and

2. Assumptions 1 to 5 and 8 hold,

3. all agents are sophisticated,

then all flow utility functions are identified using any three consecutive periods of data.

We relegate our proof of Proposition 3 to Appendix A. The arguments in the proof are closely

related to those from the literature on using the presence of a terminating action to identify
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the flow utilities in an exponential discounting framework under the assumption that the

discount factor is known, see, for example, Bajari et al. (2016) and Blevins et al. (2020).

Proposition 3 implies that any three consecutive periods of data can identify the flow

utility uK as a closed-form function of the two discount factors β and δ and the observed

CCPs. That is, we can explicitly represent the flow utility as uK = Υ(β, δ,pt,pt+1,pt+2),

where Υ(·) has a closed-form expression. Consequently, if we observe more than three pe-

riods of data, Proposition 3 provides overidentifying restrictions for the two discount fac-

tors. Specifically, if we observe data for four consecutive periods, i.e., we can compute

{pt,pt+1,pt+2,pt+3} directly from the data, we can identify and estimate two sets of flow util-

ities separately by using CCPs from any three consecutive, i.e., u1
K = Υ(β, δ,pt,pt+1,pt+2)

and u2
K = Υ(β, δ,pt+1,pt+2,pt+3). The equality of u1

K and u2
K , which comes from the station-

arity assumption on the flow utility, is essential for constructing the identifying restrictions

on the two discounting parameters. Specifically, we can write the restrictions as

Rs(β, δ,pt,pt+1,pt+2,pt+3) ≡ Υ(β, δ,pt,pt+1,pt+2)−Υ(β, δ,pt+1,pt+2,pt+3), (33)

which equals zero at the true values of the two discounting parameters. Note that this con-

dition is not linear in the two discount factors and has J restrictions but only two unknowns.

Consequently, if the gradient of the J restrictions, which is of size J × 2, has a rank of 2

at the true parameter values, we can locally identify the two discounting parameters. We

formalize this rank condition in the following assumption.

Assumption 9 The gradient of the J restrictions, denoted as ∇Rs(β, γ) ≡

[
∂R
∂β
∂R
∂γ

]
, has a

rank of 2 at the true parameter values.

Local identification of the model primitives then follows, and we summarize this result

in the following Proposition.

Proposition 4 If Assumptions 1 to 5, 8, and 9 are satisfied, then all flow utility functions,

the discount factor δ, and the present-bias parameter β are (locally) identified using any four

consecutive periods of data.

It is worth noting that Proposition 4 does not rely on the zero continuation value as-

sumption in the final period. Once the flow utility, the discount factor, and the present-bias

parameter are identified, one can identify the continuation value, which requires the con-

ventional normalization assumption. Note that when we observe the agents’ actions in the

intermediate periods instead of the final three periods, we cannot globally identify the model

without a normalization condition. However, if we are willing to impose an arguably milder
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normalization assumption, namely, that the flow utility associated with the terminating ac-

tion is known for two values of the state x, we can fully identify both the product of βδ

and the flow utility uK for other states. This assumption is milder than the ones imposed

in the existing literature. For instance, Mahajan, Michel, and Tarozzi (2020) assume that

the whole vector of uK is known; Abbring, O. Daljord, and Iskhakov (2019) assume that

uK = 0.

Identification problems in the naive agent case. In the following, we illustrate the

challenges for identification in the naive agent framework, when the final periods are not

observed. As a starting point, consider the stacked log odds ratios

ϕkK(pt) = wk,t −wK,t = uk,t − uK,t + βδQkvt+1(p
t
t+1). (34)

The key difference between these log odds ratios and the ones described in Equation (28)

is that the perceived long-run value function is computed based on the future self’s optimal

behavior pt
τ in the perception of the current self, where τ ≥ t + 1. In contrast to the

sophisticated agent, the naive agent believes that the future self is time-consistent. Therefore,

we can write the perceived long-run value function as

vt+1(p
t
t+1) = mK(p

t
t+1) + zK,t+1 = mK(p

t
t+1) + uK . (35)

The second equality holds because action K is a terminating action so that the continuation

value is zero. As in the previous subsection, the presence of a terminating action simplifies the

representation of the perceived long-run value function such that it can be fully characterized

by the flow utility associated with the terminating action uK and the adjustment term

associated with the probability of choosing this action mK(p
t
t+1).

The key difficulty for identification of this model is that we cannot recover pt
t+1 from

the data as in the sophisticated agent framework. Consequently, the identification strategy

developed for the sophisticated agent framework is not readily applicable. Because of this

difficulty, the existing literature almost exclusively focuses on models with sophisticated

agents. To the best of our knowledge the only exception is Mahajan, Michel, and Tarozzi

(2020), who study the identification of naive agents’ discount factors using purposefully

collected data on the final three periods.
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4 Estimation

In this section, we propose two estimators for the discount factors and the flow utilities.

First, the sequential estimator follows closely our identification strategy discussed in the

previous section. It estimates the discount factors in a first step and the flow utilities in a

second step. The joint estimator estimates the discount factors and the parametrized flow

utilities in one step by maximizing likelihood.

Throughout, we assume that we observe data on actions and states {ait, xit}i=1,...,N,t=t1,t1+1,...,t1+l,

where t1 is the first observed period and t1 + l denotes the last observed period, which may

equal T or may be strictly less than T , i.e., the action in the final period is not observed.

Moreover, we impose that l >= 2 when t1 + l = T , or l >= 3 when t1 + l < T , to make sure

that the identification assumptions are satisfied.

In all cases, we first estimate the equilibrium CCPs for each action a and observed state

x via a simple frequency estimator.16 That is,

p̂t(at = 1|xt = x) =

∑
i I(ait = 1, xit = x)∑

i I(xit = x)
, t = t1, t1 + 1, . . . , t1 + l. (36)

The transition matrix of the observed state x is estimated analogously. Note that both the

equilibrium CCPs and the transition matrix are estimated consistently when the sample size

goes to infinity.

4.1 Sequential Estimation

For the case of the sophisticated agent with the final periods observed, we can estimate

the two discount factors separately via an OLS estimator. For the case in which the final

periods are not observed, or the agents are naive, we present a minimum distance (MD)

estimator. Once the two discount factors are estimated, the flow utilities can be estimated

non-parametrically in a second step.

If the last three periods are observed, we can estimate the two discount factors for the

sophisticated agent via the following OLS estimator, which is based on the identification

condition in Equation (22).[
δ̂β̂

δ̂

]
= (Ω′(p̂T−2, p̂T−1, p̂T )Ω(p̂T−2, p̂T−1, p̂T ))

−1
Ω′(p̂T−2, p̂T−1, p̂T )∆ϕkK(p̂T−1). (37)

If we observe the final three periods, the two discount factors for naive agents can be

16In principle, one can employ any other consistent first-step estimator.
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estimated using a minimum distance estimator following Equation (27).17 That is,

{β̂, δ̂} = argminβ,δ||
1

βδ
Q−1

k (ϕkK(p̂T−2)− ϕkK(p̂T ))

−

[
log

(∑
k

exp

(
ϕkK(p̂T )−

1

β
∆ϕkK(p̂T )

))
+ log(p̂KT )−

1

βδ
Q−1

k ∆ϕkK(p̂T )

]
||2,

where || · || denote the L2-norm.

If the final periods are not observed in the data, the two discount factors of the sophis-

ticated agent can be estimated using a similar MD estimator, based on the identification

restrictions in Equation (33). That is,

{β̂, δ̂} = argminβ,δ||Rs(β, δ, p̂t, p̂t+1, p̂t+2, p̂t+3)||2.

The asymptotic properties of such two-step estimators are well established, see, for ex-

ample, Pesendorfer and Schmidt-Dengler (2008). Under standard regularity conditions, the

two-step estimators proposed above are consistent and asymptotically normally distributed

when the sample size goes to infinity.

4.2 Joint Maximum Likelihood Estimation

In practice, estimating both the discount factors and the flow utilities sequentially and

non-parametrically is often too demanding on the data. Especially with limited sample

sizes, researchers often specify and estimate the payoff function parametrically. In this

subsection, we present a maximum likelihood estimator that recovers the discount factors

and the parameterized flow utility jointly.

Let θ denote all parameters, i.e., θ ≡ {β, δ, θj}, where θj captures the parameters in the

flow utility associated with action j. The maximum likelihood estimator is standard and

given by

θ̂ = argmaxθ

∑
i

∑
t

log (pt(ait|xit; θ)) . (38)

The asymptotic properties of this estimator are established in Theorems 9 and 11 of John

(1988). That is, as the number of individuals becomes large, the sequence of maximum

likelihood estimators are consistent and asymptotically normally distributed.

17This estimator is similar in spirit to the one proposed by Abbring, O. Daljord, and Iskhakov (2019) for
the sophisticated agent.
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5 Monte Carlo Simulations

In this section, we analyze a stylized model setup to illustrate that our proposed estima-

tors work well in simulations.18 First, we introduce the model setup and its parametriza-

tion.19 Afterwards, we discuss our results from applying the estimators discussed in Section 4

to simulated data. We first illustrate the finite sample properties of the discount factor es-

timators discussed in Section 4.1. Not surprisingly, these estimators requires a large sample

size in order to estimate the parameters precisely. Therefore, we document the performance

of the full model estimation, i.e., discount factors and flow utilities jointly, as discussed in

Section 4.2. Throughout, the maximum likelihood estimators perform very well even with

modest sample sizes. Lastly, we illustrate the importance of avoiding the normalization of

the flow utility for both estimation and counterfactuals. In order to keep the illustration

concise, we focus on the settings in which the last three periods are observed in the data.

5.1 Model Setup

We consider a stylized solar panel adoption problem similar to the application in De

Groote and Verboven (2019). In each period t, agent i can choose to adopt a solar panel,

i.e., ait = 1, or wait for next period t + 1, i.e., ait = 0. Once the agent makes the adoption

decision, she is out of the market and never considers the adoption decision again. The

agent observes the price-adjusted quality of the solar panel, which is the only state variable

xt ∈ Supp(X ) = {2, 3, 7, 9}. We set the true discount factor to δ = 0.8 and the present-bias

parameter to β = 0.4. We assume that naive agents have the same discount factors as the

sophisticated agents, but naive agents believe that they will be time-consistent in the future.

We specify the flow utility as

u(x, a) =

{
θ1 + θ2x if ai = 1

θ3 + θ4x if ai = 0,
(39)

with θ1 = 2.5, θ2 = 0.7, θ3 = 0, θ4 = 1. We set the transition matrix of the state variable to

Q0(x
′|x) =


0.4800 0.2400 0.1600 0.1200

0.2143 0.4286 0.2143 0.1429

0.1429 0.2143 0.4286 0.2143

0.1200 0.1600 0.2400 0.4800

 . (40)

18In Appendix B.1 we provide applied researchers with additional step-by-step guidance on how to imple-
ment our identification strategy in practice.

19In Appendix B.1, we analyze and visualize the true decision strategies for all three types of agents
(time-consistent, sophisticated, and naive).
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Given the model primitives, we can solve for the equilibrium CCPs. Figure 3 in Appendix B.1

presents the adoption rates for different types of agents (time-consistent, sophisticated, and

naive) in different states.20 As x becomes larger, the adoption rate decreases since θ2 is

smaller than θ4, so that the utility from waiting becomes relatively larger. For the same

x, the adoption rate becomes larger as time advances. This is because the adoption is a

terminating action and there is no future payoff; therefore, agents may choose to wait until

the final period to realize a higher lifetime utility even though the flow utility from adopting

is higher. Furthermore, the adoption rate is higher for sophisticated and naive agents and

the adoption rate for sophisticated agents is the highest. This is consistent with present-

biased behavior: Since it is better for time-consistent agent to wait until the final period,

present-biased agents prefer today’s payoff more and adopt earlier.

5.2 Simulation Results

We simulate the data based on the DGP presented in Section 5.1 and use 100 simulation

runs for each scenario. Table 6 in Appendix B.1 summarizes the estimation results from our

OLS estimator for the case of the sophisticated agent and sample sizes of 50,000, 100,000,

and 1,000,000. Not surprisingly, the performance of the estimators improves with larger

sample sizes, i.e., the estimates of the discount factors are closer to the true values, and

the standard error shrinks. It is worth noticing that the OLS estimator mainly exploits the

variation in CCPs over time, while aggregating over all individuals. Such an estimator is

simple but requires a lot of over-time variation in the data. Similar results using similar

sample sizes are reported by Abbring and Ø. Daljord (2020a).

For the naive agent case, we simulate the data using the true CCPs for sample sizes

of 50,000, 100,000, and 1,000,000. We estimate the two discount factors using our MD

estimator. Table 7 in Appendix B.1 presents the mean and standard deviation from these

simulations. Both discount factors are estimated precisely for all of our sample sizes.

When estimating discount factors and flow utilities jointly using maximum likelihood, we

use sample sizes of 5,000, 10,000, and 20,000 for both the sophisticated and the naive agent

settings. Tables 8 and 9 in Appendix B.1 present the results for the sophisticated agent and

the naive agent, respectively. In both settings, the MLE estimator performs well even with

a moderate sample size of 5,000.

To understand the importance of the normalization, which is typically imposed in the

existing literature, we also estimate the full model under a normalization condition on the

flow utility. In this case, the maximum likelihood estimator is modified to incorporate the

20For illustration purposes, we present the adoption CCPs only for the last 4 periods of the problem.
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normalization as the follows:

θ̂normalization = argmaxθ;θu1=0

∑
i

∑
t

log (pt(ait|xit; θ)) . (41)

The estimation results when normalizing the utility associated with the adoption action

are displayed in Table 10 in Appendix B.1.21 In our maximum likelihood estimation, which

estimates utilities and discount factors jointly, the normalization of the flow utility leads to

substantially biased estimates of the discount factors.

More importantly, we study the impact of the normalization on counterfactual analyses.

Given the model estimates, we simulate the counterfactual outcomes of an adoption subsidy

using both models, the one with and the one without the flow utility normalization. In

the normalized setting, the utility from adoption is set to zero; therefore, we implement the

counterfactual by raising the utility level by 0.5. That is, θ1 is decreased by 0.3 in the case of

normalizing the non-adoption decision, and θ3 is increased by 0.5 in the case of normalizing

the adoption decision.

We plot the counterfactual CCPs with and without normalization in Figure 4 in Ap-

pendix B.1.22 We can see that that, under a subsidy for adopting, the model without

normalization increases the adoption rate only slightly compared to the status quo, while

the model with normalization raises the adoption rate much more in the first few periods.

Overall the predictions from a normalized model differ strikingly from the non-normalized

model. This results is in line with the recent literature on conducting counterfactuals in

dynamic models, see, for example, Kalouptsidi, Scott, and Souza-Rodrigues (2021).

6 Conclusion

In this paper, we study the identification of DDCMs with hyperbolic discounting. We

focus on the economically relevant class of DDCMs with a finite horizon in which agents

can choose a terminating action to end the decision problem. Under the assumption of

a stationary flow utility we provide novel identification results for both sophisticated and

naive agents’ discount factors and their flow utilities. Our identification strategy exploits

the recursive structure of the DDCM and variation in the CCPs over time. Compared

to existing identification strategies our approach has several advantages. First, we do not

require to observe the final period to identify the parameters for the sophisticated agent

21We also estimate the model normalizing the non-adoption action. The results are qualitatively similar
and available upon request.

22We plot the simulated CCPs for ten periods to see the long-run effects. The figures are based on a
sample size of 5,000.
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as long as we observe four consecutive periods of data. Second, we show identification of

the naive agent’s parameters without any special data requirement, such as data on agents’

beliefs. However, for the naive agent we require that the final three periods of data are

observed. Lastly, we avoid having to normalize the flow utility of a reference action for both

the sophisticated and the naive agent. Recent research discusses that such a normalization

often biases counterfactual simulations, see, for example, Kalouptsidi, Scott, and Souza-

Rodrigues (2021).

Based on our constructive identification proof, we propose two tractable estimators. If

the final three periods of data are observed, the discount parameters of the sophisticated

agent can be recovered using a simple OLS estimator. If the final periods are not observed

or if the agent is naive, we obtain polynomial moment conditions that form the basis of

a minimum distance estimator similarly to the one proposed by Abbring, O. Daljord, and

Iskhakov (2019). Both estimators perform well in Monte Carlo simulations. Our simulations

also indicate that more restrictive estimation approaches, such as the ones that impose an

artificial normalization of the flow utility, generally result in biased counterfactual policy

predictions.

Many applications in industrial organization, labor or health, in particular, decisions

about long-term financial products, such as mortgages, or technology adoption and invest-

ment decisions fit into our framework. Given the rising interest in empirical models with

hyperbolic discounting, our identification and estimation strategy provides an important step

to empirically investigate a broad range of important dynamic problems in a more flexible

way than is possible with existing approaches.
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Appendices

The Appendix consists of two parts: the detailed proofs for the lemmas and theorems

presented in the main text and additional details on our Monte Carlo simulations, that

can also serve as guidance for empirical researchers to better understand the identification

assumptions and their implications for applied work.

A Proofs

This section provides all proofs relegated from the main text.

Proof of Proposition 3. From Equation (32) we have the following conditions that involve

the two discount factors and the utility of the terminating action:

(
I − δ(1− β)Q̄t

)−1
(

1

βδ
Q−1

k ∆ϕkK(pt) +mK,t + uK

)
= mK,t+1 + uK + δ(1− β)Q̄t+1

(
I − δ(1− β)Q̄t+1

)−1
(

1

βδ
Q−1

k ∆ϕkK(pt+1) +mK,t+1 + uK

)
= mK,t+1 + uK −

[
I −

(
I − δ(1− β)Q̄t+1

)−1
]( 1

βδ
Q−1

k ∆ϕkK(pt+1) +mK,t+1 + uK

)
↔

[(
I − δ(1− β)Q̄t

)−1 −
(
I − δ(1− β)Q̄t+1

)−1
]
uK

= mK,t+1 −
[
I −

(
I − δ(1− β)Q̄t+1

)−1
]( 1

βδ
Q−1

k ∆ϕkK(pt+1) +mK,t+1

)
−

(
I − δ(1− β)Q̄t

)−1
(

1

βδ
Q−1

k ∆ϕkK(pt) +mK,t

)
≡ H(β, δ,Qk,pt−1,pt,pt+1), k ̸= K, (42)

where the component from the right-hand side can be directly computed if we know β and

δ. We can further simply the coefficient in front of the flow utility as follows:(
I − δ(1− β)Q̄t

)−1 −
(
I − δ(1− β)Q̄t+1

)−1

=
(
I − δ(1− β)Q̄t

)−1 [(
I − δ(1− β)Q̄t+1

)
−
(
I − δ(1− β)Q̄t

)] (
I − δ(1− β)Q̄t+1

)−1

= δ(1− β)
(
I − δ(1− β)Q̄t

)−1 [
Q̄t − Q̄t+1

] (
I − δ(1− β)Q̄t+1

)−1
.
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Therefore, as long as
[
Q̄t − Q̄t+1

]
is full rank, we can uniquely solve for the flow utility

associated with the terminating action in closed-form:

uK =
1

δ(1− β)

(
I − δ(1− β)Q̄t+1

) [
Q̄t − Q̄t+1

]−1 (
I − δ(1− β)Q̄t

)
H(β, δ,Qk,pt−1,pt,pt+1)

≡ Υ(β, δ,pt−1,pt,pt+1) (43)

We can show that
[
Q̄t − Q̄t+1

]
is indeed of full rank given Assumptions 4 and 5. Recall

that Q̄t is a J × J matrix with element (i, j) equal to
∑
k

Qk(xt+1 = j|xt = i)pk,t(xt = i).

Consequently, the difference in the compound state evolution can be written as

Q̄t − Q̄t+1 =
∑
k

diag(pk,t)Qk −
∑
k

diag(pk,t+1)Qk

=
∑
k

[diag(pk,t)− diag(pk,t+1)]Qk

=
[
diag(p1,t)− diag(p1,t+1) · · · diag(pK,t)− diag(pk,t+1)

]
×


Q1

...

QK


≡ D × E,

where diag(pk,t) is a J × J diagonal matrix with the (j, j)-th element being pk,t(x = j), D

is a matrix of sizes J × JK, and E is a matrix of sizes JK × J . rank(E) = J because of

Assumption 5, and rank(D) = J because of Assumption 5. Therefore, Q̄t − Q̄t+1 is of full

rank by Sylvester’s rank inequality. That is,

rank(D × E) ≥ rank(D) + rank(E)− J = J. (44)

Once the flow utility associated with the terminating action is identified, we can identify

other flow utilities from Equation (28).

Proof of Proposition 4. From Proposition 3, we can identify the flow utility associated

with the terminating action in closed-form given that the hyperbolic discounting parameters

can be identified using three periods of data. If we have four periods of data, this provides

over-identification restrictions on this flow utility, which we can exploit to identify the two

unknown parameters. Specifically, with four periods of data, we can obtain the equilibrium

CCPs pt,pt+1,pt+2,pt+3, which provides the following over-identification restrictions:

Υ(β, δ,pt,pt+1,pt+2) = Υ(β, δ,pt+1,pt+2,pt+3).
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B Guidance for Empirical Work

In this subsection we provide a road map for applied researchers on how to take our

identification strategy to real-world data using our Monte Carlo setup from Section 5 as an

illustrative example. To simplify the illustration and to avoid finite sample error from the first

step, we assume that we know the population CCPs and the state transition matrix.23 We

discuss sophisticated and naive agents separately. Given that all our technical assumptions

are rank conditions, we rely on the singular values of the matrix to verify that all regularity

conditions imposed by our assumptions are satisfied.24

Sophisticated agent. Our first step is to verify the full rank condition on the state tran-

sition matrix Q0 imposed by Assumption 5. Table 1 displays the singular values for matrix

Q0. We see that the number of positive singular values is the same as the number of states

for all columns. Therefore, the rank condition in Assumption 5 is satisfied in our example.

SV1 SV2 SV3 SV4
1.0010 0.3923 0.2426 0.1821

Table 1: Singular values for Q0

Second, we verify the rank condition specified in Assumption 6, which is required for

identification when we observe the data up to the final period, see Proposition 1. We need

to check the rank of matrix Ω(pT−2,pT−1,pT ). The form of Ω(pT−2,pT−1,pT ) and its singular

values are shown in Table 2. Since two singular values are positive, rk(Ω(pT−2,pT−1,pT )) = 2

holds.

col1 col2
Ω1,· -0.4544 1.4398
Ω2,· -0.4774 1.5965
Ω3,· -0.4747 1.8886
Ω4,· -0.4470 2.0580

SV(Ω) 3.6423 0.1310

Table 2: Ω and its singular values

Once the rank condition is satisfied, we can directly compute the two discount factors

23The best way to estimate CCPs and transition matrices in the first step depends on the specific appli-
cation and the available data.

24The singular values of a matrix are the absolute values of its eigenvalues. The rank of a matrix is
determined by the number of its positive singular values.
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using Equation (22)[
δβ

δ

]
= (Ω′(pT−2,pT−1,pT )Ω(pT−2,pT−1,pT ))

−1
Ω′(pT−2,pT−1,pT )∆ϕkK(pT−1). (45)

The computation result is shown in Table 3. The computed discount factors are identical

to the true parameters.

δβ δ
0.3200 0.8000

Table 3: Verified discount factors

Third, we examine the condition imposed by Assumption 8. Table 4 presents the dif-

ferences between the CCP of waiting (action 0) in different time periods.25 All values are

nonzero, which means that the non-zero condition in Assumption 8 holds in our example

and both matrices seem well-posed.

p0,T−3 − p0,T−2 p0,T−2 − p0,T−1 p0,T−1 − p0,T
x=2 0.1372 0.2297 0.3815
x=3 0.0961 0.2130 0.4543
x=7 0.0209 0.0827 0.4837
x=9 0.0083 0.0413 0.3963

Table 4: pk,t − pk,t+1

Given that all regularity conditions are satisfied, we can follow Proposition 2 to non-

parametrically identify and compute the flow utility u1 based on Equation (32), using any

three consecutive periods of data on the CCPs.26 We present the associated results in Table

5. Specifically, we compute the payoff u1 using the true CCPs from period 1 to 3 and from

period 2 to 4, separately, see column 3 and 4, respectively. All the computed reference utility

utilities are the same as the true ones.

Lastly, we verify that there is a unique solution for the two discount factors from the

over-identifying restrictions, as presented in Proposition 3. Note that u1 can be expressed as

a closed-form function of β and δ given the CCPs from any three consecutive periods. Given

that we have four periods of data, we can recover u1 separately using the CCPs in period

1 to 3 and in periods 2 to 4. To verify that there is unique solution for the two discount

factors, we check the rank condition specified in Assumption 9.

25Since there are only two actions in this example, the CCP differences for other action are the opposite
numbers of the values in the table.

26Recall that at this stage we assume that the two discount factors are known.
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True u1 u123
1 u234

1

x=2 3.9000 3.9000 3.9000
x=3 4.6000 4.6000 4.6000
x=7 7.4000 7.4000 7.4000
x=9 8.8000 8.8000 8.8000

Table 5: true u1 and computed u1 from three consecutive periods of data

As an alternative check for identification, we can represent the distance between the two

sets of utility as a function of the two discount factors:

∆(β, δ) ≡ |Υ(β, δ,p1,p2,p3)−Υ(β, δ,p2,p3,p4)|, (46)

where | · | represents the Euclidean norm. Note that identification means that only the set of

the true values of our parameters make this distance is zero. We investigate this graphically,

in Figure 1. The ”colder points” in this figure, the lower the distance criterion is. The

distance criterion is zero only at the true β and δ values.27
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Figure 1: Distance criterion for sophisticated agent using four consecutive periods of data

27In Figure 1, the distance ∆(β, δ) gets smaller along δ fast, but relatively slowly in the β-dimension.
Although the figure only shows the values within the true value ±0.2, the trend holds for the whole range
between 0 and 1.
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Naive agent. For the naive agent, the identification boils down to whether there is a

unique solution to the condition specified in Equation (27). Therefore, we need to check the

rank condition specified in Assumption 7, which can be done analogously to the sophisticated

agent case. We can also check identification for the naive agent framework using the distance

criterion as a function of the discount factors. As for the sophisticated agent case, the

distance is minimized at the true values, see Figure 2.
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Figure 2: Distance criterion for the naive agent using the final periods of data

B.1 Simulation Results

Table 6: Estimation results for different sample sizes: Sophisticated agent, OLS estimator

True value N = 50, 000 N = 100, 000 N = 1, 000, 000

β 0.40 0.1727 0.2809 0.3718
(0.7802) (0.5290) (0.1392)

δ 0.80 0.7838 0.7908 0.7947
(0.1791) (0.1209) (0.0359)

Notes: Estimation results for the discount factors for different simulated
sample sizes. Standard errors in parentheses.
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Table 7: Estimation results for different sample sizes: Naive agent, MD estimator

True value N = 50, 000 N = 100, 000 N = 1, 000, 000

β 0.40 0.3953 0.4162 0.3991
(0.1388) (0.0940) (0.0284)

δ 0.80 0.8008 0.8117 0.7995
(0.0896) (0.0634) (0.0194)

Notes: Estimation results for the discount factors for different simulated
sample sizes. Standard errors in parentheses.

Table 8: Estimation results for different sample sizes: Sophisticated agent, MLE (full model)

True value N = 5, 000 N = 10, 000 N = 20, 000

β 0.40 0.3933 0.4060 0.4005
(0.0954) (0.0665) (0.0457)

δ 0.80 0.7971 0.7990 0.7992
(0.0381) (0.0242) (0.0166)

θ1 2.50 2.5582 2.5092 2.5240
(0.5054) (0.2828) (0.2234)

θ2 0.70 0.8346 0.7231 0.7145
(0.4965) (0.2517) (0.1602)

θ3 0.00 0.0601 0.0058 0.0242
(0.4849) (0.2639) (0.2135)

θ4 1.00 1.1335 1.0236 1.0146
(0.4870) (0.2437) (0.1550)

Notes: Estimation results for the discount factors for different simulated
sample sizes. Standard errors in parentheses.
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Table 9: Estimation results for different sample sizes: Naive agent, MLE (full model)

True value N = 5, 000 N = 10, 000 N = 20, 000

β 0.40 0.4127 0.3866 0.4009
(0.1197) (0.0786) (0.0624)

δ 0.80 0.8061 0.7967 0.7985
(0.0537) (0.0335) (0.0288)

θ1 2.50 2.6290 2.6493 2.5306
(0.9243) (0.6304) (0.3692)

θ2 0.70 0.7943 0.8002 0.7359
(0.5419) (0.3564) (0.2307)

θ3 0.00 0.1089 0.1515 0.0282
(0.8887) (0.6081) (0.3669)

θ4 1.00 1.0968 1.0996 1.0364
(0.5319) (0.3501) (0.2266)

Notes: Estimation results for the discount factors for different simulated
sample sizes. Standard errors in parentheses.

Table 10: Estimation results for different sample sizes: Sophisticated agent, MLE (full model
with normalization)

True value N = 5, 000 N = 10, 000 N = 20, 000

β 0.40 0.9714 0.9755 0.9804
(6.7e-02) (6.7e-02) (5.2e-02)

δ 0.80 1.0000 1.0000 1.0000
(2.4e-07) (3.3e-14) (1.5e-09)

θ3 0.00 -1.1770 -1.2240 -1.1951
(3.9e-01) (3.8e-01) (3.5e-01)

θ4 1.00 0.2280 0.2363 0.2299
(6.3e-02) (6.0e-02) (5.7e-02)

Notes: Estimation results for the discount factors for different simulated
sample sizes. Standard errors in parentheses.

42



In the following, we provide graphical illustrations of the estimated CCPs for our different

simulation settings.
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Figure 3: Adoption rate for different types of agents
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Figure 4: Counterfactual adoption rate (normalization on adoption)
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